

Journal of Organometallic Chemistry 561 (1998) 13-18

## Synthesis and reactivity of the ligand 1,2-bis(pyridine-2-ylthio)-1,2-dicarba-*closo*-dodecaborane. Crystal structure of [Ag{1,2-(C<sub>5</sub>H<sub>4</sub>NS)<sub>2</sub>-1,2-C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>}(PPh<sub>3</sub>)]OTf

Olga Crespo, M. Concepción Gimeno, Antonio Laguna \*

Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain

Received 22 August 1997; received in revised form 11 February 1998

#### Abstract

A new *o*-carborane disubstituted ligand containing pyridinethiolate groups,  $1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}$ , has been synthesised and its reactivity toward silver and gold studied. Thus, the reaction of AgOTf (OTf = trifluoromethanesulfonate) with  $1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}$  in the molar ratio 1:1 or 1:2 affords the cationic three-coordinate silver(I) derivative [Ag(OTf){1,2-(C\_5H\_4NS)\_2-1,2-C\_2B\_{10}H\_{10}}] or the four-coordinate one [Ag{1,2-(C\_5H\_4NS)\_2-1,2-C\_2B\_{10}H\_{10}}\_2]OTf, respectively. Other three-coordinate silver(I) complexes of stoichiometry [Ag{1,2-(C\_5H\_4NS)\_2-1,2-C\_2B\_{10}H\_{10}}] OTf (L = tertiary phosphines or triphenylarsine) have been synthesised by reaction of [Ag(OTf)L] with the carborane derivative. The complex [Au\_(PPh\_3)\_2{1,2-(C\_5H\_4NS)\_2-1,2-C\_2B\_{10}H\_{10}}](OTf)\_2 has also been prepared by reaction of the ligand with [Au(OTf)(PPh\_3)] (molar ratio 1:2). The crystal structure of [Ag{1,2-(C\_5H\_4NS)\_2-1,2-C\_2B\_{10}H\_{10}}](OTf)\_2 has also been prepared by reaction of the ligand with [Au(OTf)(PPh\_3)] (molar ratio 1:2). The crystal structure of [Ag{1,2-(C\_5H\_4NS)\_2-1,2-C\_2B\_{10}H\_{10}}](OTf)\_2 has also been prepared by reaction of the ligand with [Au(OTf)(PPh\_3)] (molar ratio 1:2). The crystal structure of [Ag{1,2-(C\_5H\_4NS)\_2-1,2-C\_2B\_{10}H\_{10}}](PPh\_3)](OTf)\_2 has been established by X-ray diffraction studies. © 1998 Elsevier Science S.A. All rights reserved.

Keywords: Silver(I); Gold(I); o-Carborane; Pyridinethiolate

### 1. Introduction

The chemistry concerned with *o*-carborane derivatives has been widely studied because of their potential applications [1]. These result from their high boron content (preparation of tumour-seeking drugs for boron neutron capture therapy [2]) or as a consequence of the specific properties of carborane clusters as their remarkable thermal and chemical stability, which make then suitable for the synthesis of polymers for high temperature [3], neutron shielding purposes ([1]b) or for firing to form ceramics related to boron carbide [4].

Other properties of the carborane, such as their rigid backbones, have allowed the synthesis of complexes that exhibit novel structures. Some examples of this behaviour are the gold complex  $[Au_4\{1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-1,2-(PPh_2)_2-$ 

 $C_2B_{10}H_{10}$ <sup>2</sup>(1,2-S<sub>2</sub>-1,2- $C_2B_{10}H_{10}$ )<sup>2</sup>[5], in which two of the gold atoms exhibit an unusual tetrahedral geometry whereas the other two present linear geometries, or the silver derivative [Ag<sub>4</sub>( $\mu$ <sup>3</sup>-1-S-1,2- $C_2B_{10}H_{11}$ )<sub>2</sub>(OTf)<sub>2</sub>-(PPh<sub>3</sub>)<sub>4</sub>], which presents an unprecedented structure in the chemistry of silver thiolates [6]. Furthermore, partially degraded *o*-carborane derivatives have provided interesting structures. Partially degraded thioether derivatives have been used for the modulation in hydride–ruthenium bonds [7], whereas in gold chemistry the partially degraded diphosphine [7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8- $C_2B_9H_{10}$ ]<sup>-</sup> has been used in the synthesis of the cluster [Au<sub>4</sub>{7,8-(PPh<sub>2</sub>)<sub>2</sub>-7,8-C<sub>2</sub>B<sub>9</sub>H<sub>10</sub>}] [8].

This facts prompt us in the preparation of different ligands of o-carborane in order to study their reactivity, as well as the possible formation of unusual structures. Here we report on the synthesis of a new ligand that has two pyridinethiolate groups attached to the carbon

<sup>\*</sup> Corresponding author. Tel.: + 34 976 761185; fax: + 34 976 761187; e-mail: alaguna@posta.unizar.es

<sup>0022-328</sup>X/98/\$19.00  $\odot$  1998 Elsevier Science S.A. All rights reserved. PII S0022-328X(98)00501-4



atoms of the *o*-carborane,  $1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}$ , and the first results of its reactivity.

#### 2. Results and discussion

# 2.1. Synthesis of the ligand $1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}$

We have synthesised the new carborane derivative by addition of  $C_{10}H_8N_2S_2$  (2,2'-dithiopyridine) to a solution of 1,2-Li<sub>2</sub>-1,2-C<sub>2</sub>B<sub>10</sub>H<sub>10</sub> in diethyl ether in the molar ratio 2:1. After work up, the new ligand 1,2-(C<sub>5</sub>H<sub>4</sub>NS)<sub>2</sub>-1,2-C<sub>2</sub>B<sub>10</sub>H<sub>10</sub> (1) can be isolated in high yield (Scheme 1).

Compound 1 is a moisture- and air-stable pale yellow solid. It behaves as non-conductor in acetone solutions. In its IR spectrum, the B–H stretching modes [9] appear as a broad absorption centred at 2618 cm<sup>-1</sup> and those due to  $\nu$ (CN) [10] at 1574 cm<sup>-1</sup>.

The <sup>1</sup>H-NMR spectrum of **1** shows the equivalence of the two pyridinethiolate groups. Although four signals are expected for the four different hydrogen atoms, the spectrum displays only three resonances as two of them are overlapped. One of the signals consists of two doublets; whereas the other two are broad multiplets.

The molecular peak  $[M]^+$  [m/z = 363 (100%)] is present in the positive ion liquid secondary ion mass spectrum (LSIMS) of this ligand with coincident-calculated and experimental isotopic distributions.

## 2.2. Reactivity of $1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}$

We have studied the reactivity of  $1,2-(C_5H_4NS)_2-1,2 C_2B_{10}H_{10}$  (1) with silver and gold complexes. The coordination of the ligand to the metallic centre takes place through the nitrogen atom, as is evidenced by the crystal structure of one of the complexes. Thus, the treatment of 1 with AgOTf (OTf = trifluoromethanesulfonate) in molar ratios 1:1 or 1:2 affords the threecoordinate complex  $[Ag(OTf) \{1, 2-(C_5H_4NS)_2-1, 2 C_2B_{10}-H_{10}$ ] the four-coordinate (2) or one  $[Ag\{1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}\}_2]OTf(3)$ , respectively (Scheme 2).

Acetone solutions of complexes **2** and **3** behave as 1:1 electrolytes. In the case of compound **2** this is due to the lability of the OTf ligand. The solid IR spectra of these derivatives present the v(BH) absorptions at 2615 (**2**) and 2579 (**3**) cm<sup>-1</sup>, respectively; those corresponding to the v(CN) vibration appear at 1583 (**2**) and 1578 (**3**) cm<sup>-1</sup>, whereas those assigned to the OTf ligand [11] are different for both compounds. For complex **3**, the bands correspond to a non-coordinated anion [ $v_{as}(SO_3) = 1268$ ,  $v_s(CF_3) = 1224$ ,  $v_{as}(CF_3) = 1151$ ,



Scheme 2. (i) AgOTf, (ii) 1/2 AgOTf, (iii) [Ag(OTf)L], (iv) 2 [Au(OTf)(PPh<sub>3</sub>)].



Fig. 1. Structure of the cation of complex 4 in the crystal with the atom numbering scheme. H atoms are omitted for clarity; radii are arbitrary.

 $v_{s}(SO_{3})$  1032 cm<sup>-1</sup>], whereas for complex **2**, they correspond to a covalent anion [ $v_{as}(SO_{3}) = 1272$  and 1243,  $v_{s}(CF_{3}) = 1224$ ,  $v_{as}(CF_{3}) = 1178$ ,  $v_{s}(SO_{3})$  1028 cm<sup>-1</sup>].

In their <sup>1</sup>H-NMR spectra, the resonances observed for the hydrogen atoms of the pyridinethiolate groups appear displaced upfield compared with the free ligand. The spectrum of 2 consist of four signals, but in the case of complex 3 only three resonances appear.

In the LSIMS<sup>+</sup> mass spectra of both complexes, the most intense peak corresponds to the fragment  $[Ag\{(C_5H_4NS)_2C_2B_{10}H_{10}\}]^+$  [m/z = 470]. For complex 3 the peak assigned to  $[M-OTf]^+$  [m/z = 833 (3%)] is also present.

Displacement of the OTf anion in silver complexes [Ag(OTf)L] by 1 affords the three-coordinate complexes [Ag{1,2-(C<sub>5</sub>H<sub>4</sub>NS)<sub>2</sub>-1,2-C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>}L]OTf [L = PPh<sub>3</sub> (4), PPh<sub>2</sub>Me (5), AsPh<sub>3</sub> (6)].

The <sup>31</sup>P{<sup>1</sup>H}-NMR spectra of complexes **4** and **5** display a broad resonance. When the spectra were recorded at  $-55^{\circ}$ C, the signal splits into two doublets that correspond to the coupling of the phosphine phosphorus with the silver nuclei <sup>107</sup>Ag and <sup>109</sup>Ag. The <sup>1</sup>H-NMR spectra of these complexes exhibit broad signals for the pyridinethiolate and phenyl protons. In the spectrum of complex **5** a doublet is present that is assigned to the methyl protons of the phosphine.

The LSIMS<sup>+</sup> mass spectra of **4**–**6** exhibit m/z = 732 (27%, **4**), 671 (20%, **5**) and 777 (4%, **6**) for the cation molecular peaks, [Ag{(C<sub>5</sub>H<sub>4</sub>NS)<sub>2</sub>C<sub>2</sub>B<sub>10</sub>H<sub>10</sub>}L]<sup>+</sup>; although, those corresponding to [AgL]<sup>+</sup> are the most intense ones.

The reaction of  $[Au(OTf)(PPh_3)]$  and  $1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}$  in molar ratio 2:1 affords the complex  $[Au_2\{1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}\}(PPh_3)_2](OTf)_2$  (7). The IR spectrum of this product displays the absorp-

tions corresponding to the v(BH) frequencies, as well as those assigned to the v(CN) vibrations at 2614 and 1583 cm<sup>-1</sup>, respectively.

The  ${}^{31}P{{}^{1}H}$ -NMR spectrum shows a broad singlet for the two phosphorus atoms. In the  ${}^{1}H$ -NMR spectrum, the hydrogen atoms of the phenyl, carborane (BH) and pyridinethiolate groups appear as broad resonances.

In the LSIMS<sup>+</sup> mass spectrum, the peak  $[M-2OTf]^+$  does not appear but that corresponding to  $[Au\{(C_5H_4NS)_2C_2B_{10}H_{10}\}(PPh_3)]^+$  is present  $[m/z = 822 \ (28\%)]$ ; although the most intense peaks are those assigned to  $[Au(PPh_3)]^+$  and  $[Au(PPh_3)_2]^+ \ (m/z = 459 \ (100\%)$  and 721 (87%)), respectively.

#### 2.3. Crystal structure determination of complex 4

The molecular structure of the cation of complex 4 is shown in Fig. 1. Selected bond lengths and angles are presented in Table 1 and atomic coordinates in Table 2. It contains a silver atom bonded to one phosphorus and to two nitrogen atoms, corresponding to the triphenylphosphine and carborane derivative, respectively. There are not many examples of silver derivatives with this type of coordination, as far as we are aware only the complexes  $[IrAg(\eta^5-C_5Me_5)(pz)_3(PPh_3)]$ [12] and  $[Ag{P(C_6H_4Me-4)_3}{BPh_2(pz)_2}]$  [13] (pz =pyrazolyl) have been reported; although the latter has a pseudo-three-coordination for the silver atom. The geometry for complex 4 is distorted from the trigonal planar, mainly because the restricted bite angle of the carborane ligand, N(1)-Ag-N(2) = 84.26(8)°. Consequently, the others are wider than the ideal  $120^{\circ}$ , N(1)–  $Ag-P = 134.10(6)^{\circ}$  and  $N(2)-Ag-P = 136.43(6)^{\circ}$ . The silver atom lies 0.29 Å out of the plane formed by the P, N(1) and N(2) atoms. The Ag–N distances, 2.345(2) and 2.350(2) Å, are longer to those found in the complex [IrAg( $\eta^{5}$ -C<sub>5</sub>Me<sub>5</sub>)(pz)<sub>3</sub>(PPh<sub>3</sub>)] (2.211(4) and 2.205(3) Å) [12] or the heterotetranuclear derivative  $[Au_2Ag_2\{\mu$ - $(PPh_2)_2N_2(OClO_3)_2(PPh_3)_2$ ] (2.239(4) Å) [14], which have trigonal silver atoms, but are in between the values obtained for the complex [Ag{P(C<sub>6</sub>H<sub>4</sub>Me-4)<sub>3</sub>}{BPh<sub>2</sub>(pz)<sub>2</sub>}] (2.194(4) and 2.411(4) Å) [13]. However, they are also comparable with those in the tetrahedral compounds [Ag(dppf)(phen)]ClO<sub>4</sub> (2.343(3) and 2.361(3) Å) [15] or  $[Ag{(PPh_2)_2C_2B_{10}-}$ H<sub>10</sub>}(phen)]ClO<sub>4</sub> (2.312(5) and 2.333(5) Å) [16]. The Ag-P bond length of 2.3832(7) Å is of the same order as that in  $[IrAg(\eta^{5}-C_{5}Me_{5})(pz)_{3}(PPh_{3})]$  (2.341(1) Å) or in  $[Ag(dppf)(PPh_3)]ClO_4$  (2.4244– the shortest 2.4802(12) Å).

## 3. Experimental

IR spectra were recorded in the range 4000-200 cm<sup>-1</sup> on a Perkin-Elmer 883 spectrophotometer using

Table 1

Selected bond lengths (Å) and angles (°) for complex 4

| Bond lengths (Å) |            |                   |            |
|------------------|------------|-------------------|------------|
| Ag-N(1)          | 2.345(2)   | Ag-N(2)           | 2.350(2)   |
| Ag–P             | 2.3832(7)  | P-C(31)           | 1.822(3)   |
| P-C(41)          | 1.825(3)   | P-C(21)           | 1.829(3)   |
| S(1)-C(1)        | 1.777(3)   | S(1)-C(3)         | 1.793(3)   |
| S(2)-C(2)        | 1.780(3)   | S(2)-C(8)         | 1.797(3)   |
| N(1)-C(3)        | 1.343(4)   | N(1)-C(7)         | 1.347(4)   |
| N(2)-C(12)       | 1.340(3)   | N(2)-C(8)         | 1.348(4)   |
| C(1)–C(2)        | 1.813(4)   | C(3)–C(4)         | 1.393(4)   |
| C(4)–C(5)        | 1.387(4)   | C(5)–C(6)         | 1.382(5)   |
| C(6)–C(7)        | 1.388(4)   | C(8)–C(9)         | 1.379(4)   |
| C(9)-C(10)       | 1.384(4)   | C(10)-C(11)       | 1.370(4)   |
| C(11)-C(12)      | 1.394(4)   |                   |            |
| Bond angles (°)  |            |                   |            |
| N(1)-Ag-N(2)     | 84.26(8)   | N(1)-Ag-P         | 134.10(6)  |
| N(2)-Ag-P        | 136.43(6)  | C(31) - P - C(41) | 105.29(13) |
| C(31)–P–C(21)    | 100.50(6)  | C(41) - P - C(21) | 107.97(14) |
| C(31)–P–Ag       | 117.67(10) | C(41)–P–Ag        | 110.06(9)  |
| C(21)–P–Ag       | 114.43(9)  | C(1)-S(1)-C(3)    | 103.73(13) |
| C(2)-S(2)-C(8)   | 103.39(13) | C(3)-N(1)-C(7)    | 117.7(3)   |
| C(3)–N(1)–Ag     | 119.1(2)   | C(7)–N(1)–Ag      | 123.0(2)   |
| C(12)-N(2)-C(8)  | 116.5(2)   | C(12) - N(2) - Ag | 123.8(2)   |
| C(8)–N(2)–Ag     | 119.6(2)   | B(5)-C(1)-S(1)    | 119.0(2)   |
| B(2)-C(1)-S(1)   | 125.9(2)   | B(9)-C(1)-S(1)    | 112.1(2)   |
| B(1)-C(1)-S(1)   | 122.3(2)   | S(1)-C(1)-C(2)    | 118.3(2)   |
| B(4)-C(2)-S(2)   | 126.1(2)   | B(8)-C(2)-S(2)    | 119.2(2)   |
| B(9)-C(2)-S(2)   | 111.9(2)   | B(1)-C(2)-S(2)    | 122.1(2)   |
| S(2)-C(2)-C(1)   | 118.0(2)   | N(1)-C(3)-C(4)    | 123.7(3)   |
| N(1)-C(3)-S(1)   | 115.4(2)   | C(4)-C(3)-S(1)    | 120.8(3)   |
| C(5)-C(4)-C(3)   | 117.6(3)   | C(6)-C(5)-C(4)    | 119.3(3)   |
| C(5)-C(6)-C(7)   | 119.4(3)   | N(1)-C(7)-C(6)    | 122.1(3)   |
| N(2)-C(8)-C(9)   | 123.7(3)   | N(2)-C(8)-S(2)    | 114.7(2)   |
| C(9)–C(8)–S(2)   | 121.6(2)   | C(8)-C(9)-C(10)   | 118.4(3)   |
| C(11)-C(10)-C(9) | 119.2(3)   | C(10)-C(11)-C(12) | 118.6(3)   |
| N(2)-C(12)-C(11) | 123.3(3)   |                   |            |

Table 2

Atomic coordinates  $(\times 10^4)$  and equivalent isotropic displacement parameters  $(\mathring{A}^2 \times 10^3)$  for 4

| Ag2451(1)2424(1)6482(1)25(1)P3791(1)2560(1)7304(1)21(1)S(1)1982(1)557(1)7302(1)28(1)S(2)2975(1)690(1)5464(1)25(1)N(1)1083(2)1939(2)6746(1)23(1)N(2)1994(2)2072(2)5098(1)22(1)C(1)1844(2) $-320(2)$ 6589(2)22(1)C(2)2359(2) $-254(2)$ 5635(2)21(1)C(3)1005(2)1165(2)7113(2)26(1)C(4)243(2)864(2)7391(2)34(1)C(5) $-484(2)$ 1373(2)7230(2)39(1)C(6) $-421(2)$ 2158(2)66827(2)37(1)C(7)372(2)2430(2)6608(2)32(1)C(8)2263(2)1328(2)4771(2)22(1)C(9)2053(2)1081(2)3958(2)28(1)C(10)1467(2)1581(2)3471(2)33(1)C(11)1151(2)2322(2)3798(2)30(1)C(12)1443(2)2554(2)4608(2)27(1)B(1)1253(2) $-221(2)$ 5637(2)22(1)B(3)919(2) $-1301(2)$ 5374(2)26(1)B(4)1791(2) $-848(2)$ 4897(2)24(1)B(5)1941(2) $-1350(2)$ 6955(2)30(1)B(6)1354(2) $-2008(2)$ 6195(2)30(1)B(6)1354(2) $-2008(2)$ 6195(2)30(1) <tr<< th=""><th></th><th>X</th><th>у</th><th>Ζ</th><th><math>U_{\mathrm{eq}}</math></th></tr<<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | X       | у                  | Ζ                  | $U_{\mathrm{eq}}$     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|--------------------|--------------------|-----------------------|
| P $3791(1)$ $2560(1)$ $7304(1)$ $21(1)$ S(1)         1982(1) $557(1)$ $7302(1)$ $28(1)$ S(2) $2975(1)$ $690(1)$ $5464(1)$ $25(1)$ N(1)         1083(2) $1939(2)$ $6746(1)$ $23(1)$ N(2) $1994(2)$ $2072(2)$ $5098(1)$ $22(1)$ C(1) $1844(2)$ $-320(2)$ $6589(2)$ $22(1)$ C(2) $2359(2)$ $-254(2)$ $5635(2)$ $21(1)$ C(3) $1005(2)$ $1165(2)$ $7113(2)$ $26(1)$ C(4) $243(2)$ $864(2)$ $7391(2)$ $34(1)$ C(5) $-484(2)$ $1373(2)$ $7230(2)$ $39(1)$ C(6) $-421(2)$ $158(2)$ $4771(2)$ $22(1)$ C(6) $-421(2)$ $158(2)$ $4771(2)$ $22(1)$ C(10) $1467(2)$ $1581(2)$ $3471(2)$ $33(1)$ C(11) $1151(2)$ $232(2)$ $376(1)$ $26(1)$ <td>Ag</td> <td>2451(1)</td> <td>2424(1)</td> <td>6482(1)</td> <td>25(1)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ag     | 2451(1) | 2424(1)            | 6482(1)            | 25(1)                 |
| S(1)       1982(1)       557(1)       7302(1)       28(1)         S(2)       2975(1)       690(1)       5464(1)       25(1)         N(1)       1083(2)       1939(2)       6746(1)       23(1)         N(2)       1994(2)       2072(2)       5098(1)       22(1)         C(1)       1844(2) $-320(2)$ 6589(2)       22(1)         C(2)       2359(2) $-254(2)$ 5635(2)       21(1)         C(3)       1005(2)       1165(2)       7113(2)       26(1)         C(4)       243(2)       864(2)       7391(2)       34(1)         C(5) $-484(2)$ 1373(2)       7230(2)       39(1)         C(6) $-421(2)$ 2158(2)       6827(2)       37(1)         C(7)       372(2)       2430(2)       6608(2)       32(1)         C(8)       2263(2)       1328(2)       4771(2)       32(1)         C(10)       1467(2)       1581(2)       3471(2)       33(1)         C(11)       1151(2)       2322(2)       378(2)       30(1)         C(11)       1253(2) $-21(2)$ 5637(2)       22(1)         B(1)       1253(2) $-958(2)$ 36(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P      | 3791(1) | 2560(1)            | 7304(1)            | 21(1)                 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S(1)   | 1982(1) | 557(1)             | 7302(1)            | 28(1)                 |
| N(1)1083(2)1939(2) $6746(1)$ $23(1)$ N(2)1994(2)2072(2)5098(1)22(1)C(1)1844(2) $-320(2)$ $6589(2)$ 22(1)C(2)2359(2) $-254(2)$ $5635(2)$ 21(1)C(3)1005(2)1165(2) $7113(2)$ 26(1)C(4)243(2) $864(2)$ $7391(2)$ 34(1)C(5) $-484(2)$ 1373(2) $7230(2)$ 39(1)C(6) $-421(2)$ 2158(2) $6608(2)$ 32(1)C(7)372(2)2430(2) $6608(2)$ 32(1)C(8)2263(2)1328(2) $4771(2)$ 22(1)C(9)2053(2)1081(2)3958(2)28(1)C(10)1467(2)1581(2)3471(2)33(1)C(11)1151(2)2322(2)3798(2)30(1)C(12)1443(2)2554(2)4608(2)27(1)B(1)1253(2) $-221(2)$ 5637(2)22(1)B(2)959(2) $-958(2)$ 6430(2)26(1)B(3)919(2) $-1301(2)$ 5374(2)26(1)B(4)1791(2) $-848(2)$ 4897(2)24(1)B(5)1941(2) $-1350(2)$ 6955(2)30(1)B(7)1858(2) $-1936(2)$ 5259(2)29(1)B(8)2762(2) $-1245(2)$ 5428(2)26(1)B(9)2798(2) $-843(2)$ 6470(2)27(1)B(10)2503(2) $-1936(2)$ 5259(2)29(1)C(21)472(2)2561(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S(2)   | 2975(1) | 690(1)             | 5464(1)            | 25(1)                 |
| N(2)1994(2)2072(2)5098(1)22(1)C(1)1844(2) $-320(2)$ 6589(2)22(1)C(2)2359(2) $-254(2)$ 5635(2)21(1)C(3)1005(2)1165(2)7113(2)26(1)C(4)243(2)864(2)7391(2)34(1)C(5) $-484(2)$ 1373(2)7230(2)39(1)C(6) $-421(2)$ 2158(2)6827(2)37(1)C(7)372(2)2430(2)6608(2)32(1)C(8)2263(2)1328(2)4771(2)22(1)C(9)2053(2)1081(2)3958(2)28(1)C(10)1467(2)1581(2)3471(2)30(1)C(11)1151(2)2322(2)3798(2)30(1)C(11)1151(2)2322(2)3798(2)30(1)C(11)1151(2)2322(2)3798(2)26(1)B(3)919(2) $-1301(2)$ 5374(2)26(1)B(3)919(2) $-1301(2)$ 5374(2)26(1)B(4)1791(2) $-848(2)$ 4897(2)24(1)B(5)1941(2) $-1350(2)$ 6955(2)30(1)B(7)1858(2) $-1936(2)$ 5259(2)29(1)B(8)2762(2) $-1245(2)$ 5428(2)26(1)B(9)2798(2) $-843(2)$ 6470(2)27(1)B(10)2503(2) $-1946(2)$ 6233(2)31(1)C(21)4729(2)2547(2)574(2)38(1)C(21)4796(2)276(2)578(2)32(1) </td <td>N(1)</td> <td>1083(2)</td> <td>1939(2)</td> <td>6746(1)</td> <td>23(1)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N(1)   | 1083(2) | 1939(2)            | 6746(1)            | 23(1)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N(2)   | 1994(2) | 2072(2)            | 5098(1)            | 22(1)                 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(1)   | 1844(2) | -320(2)            | 6589(2)            | 22(1)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(2)   | 2359(2) | -254(2)            | 5635(2)            | 21(1)                 |
| $\begin{array}{ccccc} C(4) & 243(2) & 864(2) & 7391(2) & 34(1) \\ C(5) & -484(2) & 1373(2) & 7230(2) & 39(1) \\ C(6) & -421(2) & 2158(2) & 6827(2) & 37(1) \\ C(7) & 372(2) & 2430(2) & 6608(2) & 32(1) \\ C(7) & 372(2) & 2430(2) & 6608(2) & 32(1) \\ C(8) & 2263(2) & 1328(2) & 4771(2) & 22(1) \\ C(9) & 2053(2) & 1081(2) & 3958(2) & 28(1) \\ C(10) & 1467(2) & 1581(2) & 3471(2) & 33(1) \\ C(11) & 1151(2) & 2322(2) & 3798(2) & 30(1) \\ C(12) & 1443(2) & 2554(2) & 4608(2) & 27(1) \\ B(1) & 1253(2) & -221(2) & 5637(2) & 22(1) \\ B(2) & 959(2) & -958(2) & 6430(2) & 26(1) \\ B(3) & 919(2) & -1301(2) & 5374(2) & 26(1) \\ B(4) & 1791(2) & -848(2) & 4897(2) & 24(1) \\ B(5) & 1941(2) & -1350(2) & 6955(2) & 30(1) \\ B(6) & 1354(2) & -2008(2) & 6195(2) & 30(1) \\ B(7) & 1858(2) & -1936(2) & 5259(2) & 29(1) \\ B(8) & 2762(2) & -1245(2) & 5428(2) & 26(1) \\ B(9) & 2798(2) & -843(2) & 6470(2) & 27(1) \\ B(10) & 2503(2) & -1946(2) & 6233(2) & 31(1) \\ C(21) & 4729(2) & 2547(2) & 6711(2) & 24(1) \\ C(22) & 4606(2) & 2766(2) & 5878(2) & 32(1) \\ C(23) & 5298(2) & 2914(2) & 5422(2) & 39(1) \\ C(24) & 6126(2) & 2807(2) & 5794(2) & 38(1) \\ C(25) & 6262(2) & 2561(2) & 6618(2) & 36(1) \\ C(26) & 5569(2) & 2444(2) & 7079(2) & 29(1) \\ C(31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(32) & 4554(2) & 3616(2) & 8613(2) & 29(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 7977(2) & 30(1) \\ C(35) & 3746(2) & 51105(2) & 7777(2) & 30(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(42) & 4359(2) & 935(2) & 7934(2) & 34(1) \\ C(43) & 4340(2) & 236(6) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -6431(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4318(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(3) & 51$ | C(3)   | 1005(2) | 1165(2)            | 7113(2)            | 26(1)                 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(4)   | 243(2)  | 864(2)             | 7391(2)            | 34(1)                 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(5)   | -484(2) | 1373(2)            | 7230(2)            | 39(1)                 |
| $\begin{array}{ccccccc} C(7) & 372(2) & 2430(2) & 6608(2) & 32(1) \\ C(8) & 2263(2) & 1328(2) & 4771(2) & 22(1) \\ C(9) & 2053(2) & 1081(2) & 3958(2) & 28(1) \\ C(10) & 1467(2) & 1581(2) & 3471(2) & 33(1) \\ C(11) & 1151(2) & 2322(2) & 3798(2) & 30(1) \\ C(12) & 1443(2) & 2554(2) & 4608(2) & 27(1) \\ B(1) & 1253(2) & -221(2) & 5637(2) & 22(1) \\ B(2) & 959(2) & -958(2) & 6430(2) & 26(1) \\ B(3) & 919(2) & -1301(2) & 5374(2) & 26(1) \\ B(4) & 1791(2) & -848(2) & 4897(2) & 24(1) \\ B(5) & 1941(2) & -1350(2) & 6955(2) & 30(1) \\ B(6) & 1354(2) & -2008(2) & 6195(2) & 30(1) \\ B(7) & 1858(2) & -1936(2) & 5259(2) & 29(1) \\ B(8) & 2762(2) & -1245(2) & 5428(2) & 26(1) \\ B(9) & 2798(2) & -843(2) & 6470(2) & 27(1) \\ B(10) & 2503(2) & -1946(2) & 6233(2) & 31(1) \\ C(21) & 4729(2) & 2547(2) & 6711(2) & 24(1) \\ C(23) & 5298(2) & 2914(2) & 5422(2) & 39(1) \\ C(24) & 6126(2) & 2807(2) & 5794(2) & 38(1) \\ C(25) & 6262(2) & 2561(2) & 6618(2) & 36(1) \\ C(26) & 5569(2) & 2444(2) & 7079(2) & 29(1) \\ C(31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(44) & 3430(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4027(1) & 95(1) \\ \end{array}$                                                                                                                                                         | C(6)   | -421(2) | 2158(2)            | 6827(2)            | 37(1)                 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(7)   | 372(2)  | 2430(2)            | 6608(2)            | 32(1)                 |
| $\begin{array}{cccc} C(9) & 2053(2) & 1081(2) & 3958(2) & 28(1) \\ C(10) & 1467(2) & 1581(2) & 3471(2) & 33(1) \\ C(11) & 1151(2) & 2322(2) & 3798(2) & 30(1) \\ C(12) & 1443(2) & 2554(2) & 4608(2) & 27(1) \\ B(1) & 1253(2) & -221(2) & 5637(2) & 22(1) \\ B(2) & 959(2) & -958(2) & 6430(2) & 26(1) \\ B(3) & 919(2) & -1301(2) & 5374(2) & 26(1) \\ B(4) & 1791(2) & -848(2) & 4897(2) & 24(1) \\ B(5) & 1941(2) & -1350(2) & 6955(2) & 30(1) \\ B(6) & 1354(2) & -2008(2) & 6195(2) & 30(1) \\ B(6) & 1354(2) & -2008(2) & 6195(2) & 30(1) \\ B(7) & 1858(2) & -1936(2) & 5259(2) & 29(1) \\ B(8) & 2762(2) & -1245(2) & 5428(2) & 26(1) \\ B(9) & 2798(2) & -843(2) & 6470(2) & 27(1) \\ B(10) & 2503(2) & -1946(2) & 6233(2) & 31(1) \\ C(21) & 4729(2) & 2547(2) & 6711(2) & 24(1) \\ C(22) & 4606(2) & 2766(2) & 5878(2) & 32(1) \\ C(23) & 5298(2) & 2914(2) & 5422(2) & 39(1) \\ C(24) & 6126(2) & 2807(2) & 5794(2) & 38(1) \\ C(25) & 6262(2) & 2561(2) & 6618(2) & 36(1) \\ C(26) & 5569(2) & 2444(2) & 7079(2) & 29(1) \\ C(31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7934(2) & 34(1) \\ C(44) & 3857(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 400(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4025(1) & 72(1) \\ \end{array}$            | C(8)   | 2263(2) | 1328(2)            | 4771(2)            | 22(1)                 |
| $\begin{array}{cccccc} C(10) & 1467(2) & 1581(2) & 3471(2) & 33(1) \\ C(11) & 1151(2) & 2322(2) & 3798(2) & 30(1) \\ C(12) & 1443(2) & 2554(2) & 4608(2) & 27(1) \\ B(1) & 1253(2) & -221(2) & 5637(2) & 22(1) \\ B(2) & 959(2) & -958(2) & 6430(2) & 26(1) \\ B(3) & 919(2) & -1301(2) & 5374(2) & 26(1) \\ B(4) & 1791(2) & -848(2) & 4897(2) & 24(1) \\ B(5) & 1941(2) & -1350(2) & 6955(2) & 30(1) \\ B(6) & 1354(2) & -2008(2) & 6195(2) & 30(1) \\ B(6) & 1354(2) & -2008(2) & 6195(2) & 30(1) \\ B(7) & 1858(2) & -1936(2) & 5259(2) & 29(1) \\ B(8) & 2762(2) & -1245(2) & 5428(2) & 26(1) \\ B(9) & 2798(2) & -843(2) & 6470(2) & 27(1) \\ B(10) & 2503(2) & -1946(2) & 6233(2) & 31(1) \\ C(21) & 4729(2) & 2547(2) & 6711(2) & 24(1) \\ C(22) & 4606(2) & 2766(2) & 5878(2) & 32(1) \\ C(23) & 5298(2) & 2914(2) & 5422(2) & 39(1) \\ C(24) & 6126(2) & 2807(2) & 5794(2) & 38(1) \\ C(25) & 6262(2) & 2561(2) & 6618(2) & 36(1) \\ C(26) & 5569(2) & 2444(2) & 7079(2) & 29(1) \\ C(31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(44) & 3857(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4318(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4025(1) & 72(1) \\ F(3) & 2073(2) & -4381(2) & 4077(2) & 955(1) \\ \end{array}$                                                                                                                                                                                                    | C(9)   | 2053(2) | 1081(2)            | 3958(2)            | 28(1)                 |
| $\begin{array}{cccccc} C(11) & 1151(2) & 2322(2) & 3798(2) & 30(1) \\ C(12) & 1443(2) & 2554(2) & 4608(2) & 27(1) \\ B(1) & 1253(2) & -221(2) & 5637(2) & 22(1) \\ B(2) & 959(2) & -958(2) & 6430(2) & 26(1) \\ B(3) & 919(2) & -1301(2) & 5374(2) & 26(1) \\ B(4) & 1791(2) & -848(2) & 4897(2) & 24(1) \\ B(5) & 1941(2) & -1350(2) & 6955(2) & 30(1) \\ B(6) & 1354(2) & -2008(2) & 6195(2) & 30(1) \\ B(7) & 1858(2) & -1936(2) & 5259(2) & 29(1) \\ B(8) & 2762(2) & -1245(2) & 5428(2) & 26(1) \\ B(9) & 2798(2) & -843(2) & 6470(2) & 27(1) \\ B(10) & 2503(2) & -1946(2) & 6233(2) & 31(1) \\ C(21) & 4729(2) & 2547(2) & 6711(2) & 24(1) \\ C(22) & 4606(2) & 2766(2) & 5878(2) & 32(1) \\ C(24) & 6126(2) & 2914(2) & 5422(2) & 39(1) \\ C(24) & 6126(2) & 2914(2) & 5422(2) & 39(1) \\ C(24) & 6126(2) & 2807(2) & 5794(2) & 38(1) \\ C(25) & 6262(2) & 2561(2) & 6618(2) & 36(1) \\ C(26) & 5569(2) & 2444(2) & 7079(2) & 29(1) \\ C(31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(32) & 4554(2) & 3616(2) & 8613(2) & 29(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(44) & 3857(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 236(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(44) & 3400(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4319(1) & 4077(1) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                   | C(10)  | 1467(2) | 1581(2)            | 3471(2)            | 33(1)                 |
| $\begin{array}{cccccc} (12) & 1443(2) & 2554(2) & 4608(2) & 27(1) \\ B(1) & 1253(2) & -221(2) & 5637(2) & 22(1) \\ B(2) & 959(2) & -958(2) & 6430(2) & 26(1) \\ B(3) & 919(2) & -1301(2) & 5374(2) & 26(1) \\ B(4) & 1791(2) & -848(2) & 4897(2) & 24(1) \\ B(5) & 1941(2) & -1350(2) & 6955(2) & 30(1) \\ B(6) & 1354(2) & -2008(2) & 6195(2) & 30(1) \\ B(7) & 1858(2) & -1936(2) & 5259(2) & 29(1) \\ B(8) & 2762(2) & -1245(2) & 5428(2) & 26(1) \\ B(9) & 2798(2) & -843(2) & 6470(2) & 27(1) \\ B(10) & 2503(2) & -1946(2) & 6233(2) & 31(1) \\ C(21) & 4729(2) & 2547(2) & 6711(2) & 24(1) \\ C(22) & 4606(2) & 2766(2) & 5878(2) & 32(1) \\ C(23) & 5298(2) & 2914(2) & 5422(2) & 39(1) \\ C(24) & 6126(2) & 2807(2) & 5794(2) & 38(1) \\ C(25) & 6262(2) & 2561(2) & 6618(2) & 36(1) \\ C(26) & 5569(2) & 2444(2) & 7079(2) & 29(1) \\ C(31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(44) & 3857(2) & 236(2) & 9153(2) & 40(1) \\ C(44) & 3857(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 268(2) & 9153(2) & 40(1) \\ C(44) & 3857(2) & 268(2) & 9153(2) & 40(1) \\ C(44) & 3857(2) & 268(2) & 9153(2) & 40(1) \\ C(44) & 3857(2) & 268(2) & 9153(2) & 40(1) \\ C(44) & 3857(2) & 268(2) & 9153(2) & 40(1) \\ C(44) & 3857(2) & 268(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                            | C(11)  | 1151(2) | 2322(2)            | 3798(2)            | 30(1)                 |
| $\begin{array}{c cccc} & 1 & 1253(2) & -221(2) & 5637(2) & 22(1) \\ B(2) & 959(2) & -958(2) & 6430(2) & 26(1) \\ B(3) & 919(2) & -1301(2) & 5374(2) & 26(1) \\ B(4) & 1791(2) & -848(2) & 4897(2) & 24(1) \\ B(5) & 1941(2) & -1350(2) & 6955(2) & 30(1) \\ B(6) & 1354(2) & -2008(2) & 6195(2) & 30(1) \\ B(7) & 1858(2) & -1936(2) & 5259(2) & 29(1) \\ B(8) & 2762(2) & -1245(2) & 5428(2) & 26(1) \\ B(9) & 2798(2) & -843(2) & 6470(2) & 27(1) \\ B(10) & 2503(2) & -1946(2) & 6233(2) & 31(1) \\ C(21) & 4729(2) & 2547(2) & 6711(2) & 24(1) \\ C(22) & 4606(2) & 2766(2) & 5878(2) & 32(1) \\ C(23) & 5298(2) & 2914(2) & 5422(2) & 39(1) \\ C(24) & 6126(2) & 2807(2) & 5794(2) & 38(1) \\ C(25) & 6262(2) & 2561(2) & 6618(2) & 36(1) \\ C(26) & 5569(2) & 2444(2) & 7079(2) & 29(1) \\ C(31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 277(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                | C(12)  | 1443(2) | 2554(2)            | 4608(2)            | 27(1)                 |
| B(2) $959(2)$ $-958(2)$ $6430(2)$ $26(1)$ B(3) $919(2)$ $-1301(2)$ $5374(2)$ $26(1)$ B(4) $1791(2)$ $-848(2)$ $4897(2)$ $24(1)$ B(5) $1941(2)$ $-1350(2)$ $6955(2)$ $30(1)$ B(6) $1354(2)$ $-2008(2)$ $6195(2)$ $30(1)$ B(7) $1858(2)$ $-1936(2)$ $5259(2)$ $29(1)$ B(8) $2762(2)$ $-1245(2)$ $5428(2)$ $26(1)$ B(9) $2798(2)$ $-843(2)$ $6470(2)$ $27(1)$ B(10) $2503(2)$ $-1946(2)$ $6233(2)$ $31(1)$ C(21) $4729(2)$ $2547(2)$ $6711(2)$ $24(1)$ C(22) $4606(2)$ $2766(2)$ $5878(2)$ $32(1)$ C(23) $5298(2)$ $2914(2)$ $5422(2)$ $39(1)$ C(24) $6126(2)$ $2807(2)$ $5794(2)$ $38(1)$ C(25) $6262(2)$ $2561(2)$ $6618(2)$ $36(1)$ C(26) $5569(2)$ $2444(2)$ $7079(2)$ $29(1)$ C(31) $3987(2)$ $3556(2)$ $7898(2)$ $21(1)$ C(33) $4716(2)$ $4412(2)$ $9001(2)$ $32(1)$ C(34) $4310(2)$ $5153(2)$ $8685(2)$ $30(1)$ C(35) $3746(2)$ $5105(2)$ $7977(2)$ $30(1)$ C(41) $3913(2)$ $1685(2)$ $8066(2)$ $22(1)$ C(41) $3913(2)$ $1685(2)$ $8066(2)$ $22(1)$ C(44) $3857(2)$ $286(2)$ $913(2)$ $40(1)$ </td <td>B(1)</td> <td>1253(2)</td> <td>-221(2)</td> <td>5637(2)</td> <td>22(1)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B(1)   | 1253(2) | -221(2)            | 5637(2)            | 22(1)                 |
| B(3) $919(2)$ $-1301(2)$ $5374(2)$ $26(1)$ B(4) $1791(2)$ $-848(2)$ $4897(2)$ $24(1)$ B(5) $1941(2)$ $-1350(2)$ $6955(2)$ $30(1)$ B(6) $1354(2)$ $-2008(2)$ $6195(2)$ $30(1)$ B(7) $1858(2)$ $-1936(2)$ $5259(2)$ $29(1)$ B(8) $2762(2)$ $-1245(2)$ $5428(2)$ $26(1)$ B(9) $2798(2)$ $-843(2)$ $6470(2)$ $27(1)$ B(10) $2503(2)$ $-1946(2)$ $6233(2)$ $31(1)$ C(21) $4729(2)$ $2547(2)$ $6711(2)$ $24(1)$ C(22) $4606(2)$ $2766(2)$ $5878(2)$ $32(1)$ C(23) $5298(2)$ $2914(2)$ $5422(2)$ $39(1)$ C(24) $6126(2)$ $2807(2)$ $5794(2)$ $38(1)$ C(25) $6262(2)$ $2561(2)$ $6618(2)$ $36(1)$ C(26) $5569(2)$ $2444(2)$ $7079(2)$ $29(1)$ C(31) $3987(2)$ $3556(2)$ $7898(2)$ $21(1)$ C(33) $4716(2)$ $4412(2)$ $9001(2)$ $32(1)$ C(34) $4310(2)$ $5153(2)$ $8685(2)$ $30(1)$ C(35) $3746(2)$ $5153(2)$ $8066(2)$ $22(1)$ C(44) $3857(2)$ $286(2)$ $977(2)$ $30(1)$ C(43) $4340(2)$ $236(2)$ $913(2)$ $440(1)$ C(44) $3857(2)$ $286(2)$ $913(2)$ $40(1)$ C(44) $3857(2)$ $286(2)$ $913(2)$ $40(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B(2)   | 959(2)  | -958(2)            | 6430(2)            | $\frac{26(1)}{26(1)}$ |
| B(4) $1791(2)$ $-848(2)$ $4897(2)$ $24(1)$ B(5) $1941(2)$ $-1350(2)$ $6955(2)$ $30(1)$ B(6) $1354(2)$ $-2008(2)$ $6195(2)$ $30(1)$ B(7) $1858(2)$ $-1936(2)$ $5259(2)$ $29(1)$ B(8) $2762(2)$ $-1245(2)$ $5428(2)$ $26(1)$ B(9) $2798(2)$ $-843(2)$ $6470(2)$ $27(1)$ B(10) $2503(2)$ $-1946(2)$ $6233(2)$ $31(1)$ C(21) $4729(2)$ $2547(2)$ $6711(2)$ $24(1)$ C(23) $5298(2)$ $2914(2)$ $5422(2)$ $39(1)$ C(24) $6126(2)$ $2807(2)$ $5794(2)$ $38(1)$ C(25) $6262(2)$ $2561(2)$ $6618(2)$ $36(1)$ C(26) $5569(2)$ $2444(2)$ $7079(2)$ $29(1)$ C(31) $3987(2)$ $3556(2)$ $7898(2)$ $21(1)$ C(32) $4554(2)$ $3616(2)$ $8613(2)$ $29(1)$ C(33) $4716(2)$ $4412(2)$ $9001(2)$ $32(1)$ C(34) $4310(2)$ $5153(2)$ $8685(2)$ $30(1)$ C(35) $3746(2)$ $5105(2)$ $7977(2)$ $30(1)$ C(41) $3913(2)$ $1685(2)$ $8066(2)$ $22(1)$ C(41) $3913(2)$ $1685(2)$ $8066(2)$ $22(1)$ C(44) $3857(2)$ $286(2)$ $9153(2)$ $40(1)$ C(45) $3397(2)$ $1026(2)$ $9282(2)$ $32(1)$ C(46) $3426(2)$ $1720(1)$ $8743(1)$ $27(1)$ <td>B(3)</td> <td>919(2)</td> <td>-1301(2)</td> <td>5374(2)</td> <td>26(1)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B(3)   | 919(2)  | -1301(2)           | 5374(2)            | 26(1)                 |
| B(5) $1941(2)$ $-1350(2)$ $6955(2)$ $30(1)$ B(6) $1354(2)$ $-2008(2)$ $6195(2)$ $30(1)$ B(7) $1858(2)$ $-1936(2)$ $5259(2)$ $29(1)$ B(8) $2762(2)$ $-1245(2)$ $5428(2)$ $26(1)$ B(9) $2798(2)$ $-843(2)$ $6470(2)$ $27(1)$ B(10) $2503(2)$ $-1946(2)$ $6233(2)$ $31(1)$ C(21) $4729(2)$ $2547(2)$ $6711(2)$ $24(1)$ C(22) $4606(2)$ $2766(2)$ $5878(2)$ $32(1)$ C(23) $5298(2)$ $2914(2)$ $5422(2)$ $39(1)$ C(24) $6126(2)$ $2807(2)$ $5794(2)$ $38(1)$ C(25) $6262(2)$ $2561(2)$ $6618(2)$ $36(1)$ C(26) $5569(2)$ $2444(2)$ $7079(2)$ $29(1)$ C(31) $3987(2)$ $3556(2)$ $7898(2)$ $21(1)$ C(32) $4554(2)$ $3616(2)$ $8613(2)$ $29(1)$ C(33) $4716(2)$ $4412(2)$ $9001(2)$ $32(1)$ C(34) $4310(2)$ $5153(2)$ $8066(2)$ $22(1)$ C(41) $3913(2)$ $1685(2)$ $8066(2)$ $22(1)$ C(41) $3913(2)$ $1685(2)$ $8066(2)$ $22(1)$ C(43) $4340(2)$ $236(2)$ $8480(2)$ $47(1)$ C(44) $3857(2)$ $286(2)$ $9153(2)$ $40(1)$ C(45) $3397(2)$ $1026(2)$ $928(2)$ $32(1)$ C(46) $3426(2)$ $1720(1)$ $8743(1)$ $27(1)$ <td>B(4)</td> <td>1791(2)</td> <td>-848(2)</td> <td>4897(2)</td> <td>24(1)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B(4)   | 1791(2) | -848(2)            | 4897(2)            | 24(1)                 |
| R(6) $1354(2)$ $-2008(2)$ $6195(2)$ $30(1)$ $R(7)$ $1858(2)$ $-1936(2)$ $5259(2)$ $29(1)$ $R(8)$ $2762(2)$ $-1245(2)$ $5428(2)$ $26(1)$ $R(9)$ $2798(2)$ $-843(2)$ $6470(2)$ $27(1)$ $R(10)$ $2503(2)$ $-1946(2)$ $6233(2)$ $31(1)$ $C(21)$ $4729(2)$ $2547(2)$ $6711(2)$ $24(1)$ $C(22)$ $4606(2)$ $2766(2)$ $5878(2)$ $32(1)$ $C(23)$ $5298(2)$ $2914(2)$ $5422(2)$ $39(1)$ $C(24)$ $6126(2)$ $2807(2)$ $5794(2)$ $38(1)$ $C(25)$ $6262(2)$ $2561(2)$ $6618(2)$ $36(1)$ $C(26)$ $5569(2)$ $2444(2)$ $7079(2)$ $29(1)$ $C(31)$ $3987(2)$ $3556(2)$ $7898(2)$ $21(1)$ $C(32)$ $4554(2)$ $3616(2)$ $8613(2)$ $29(1)$ $C(33)$ $4716(2)$ $4412(2)$ $9001(2)$ $32(1)$ $C(34)$ $4310(2)$ $5153(2)$ $8685(2)$ $30(1)$ $C(35)$ $3746(2)$ $5105(2)$ $7977(2)$ $30(1)$ $C(44)$ $3857(2)$ $286(2)$ $9153(2)$ $40(1)$ $C(44)$ $3857(2)$ $286(2)$ $9153(2)$ $40(1)$ $C(45)$ $3397(2)$ $1026(2)$ $9282(2)$ $32(1)$ $C(44)$ $3450(2)$ $772(1)$ $8743(1)$ $27(1)$ $C(45)$ $3397(2)$ $1026(2)$ $9282(2)$ $32(1)$ $C(44)$ $3457(2)$ $28$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B(5)   | 1941(2) | -1350(2)           | 6955(2)            | 30(1)                 |
| (1) $(12)$ $(-1936(2)$ $5259(2)$ $29(1)$ $B(7)$ $1858(2)$ $-1936(2)$ $5259(2)$ $29(1)$ $B(8)$ $2762(2)$ $-1245(2)$ $5428(2)$ $26(1)$ $B(9)$ $2798(2)$ $-843(2)$ $6470(2)$ $27(1)$ $B(10)$ $2503(2)$ $-1946(2)$ $6233(2)$ $31(1)$ $C(21)$ $4729(2)$ $2547(2)$ $6711(2)$ $24(1)$ $C(22)$ $4606(2)$ $2766(2)$ $5878(2)$ $32(1)$ $C(23)$ $5298(2)$ $2914(2)$ $5422(2)$ $39(1)$ $C(24)$ $6126(2)$ $2807(2)$ $5794(2)$ $38(1)$ $C(25)$ $6262(2)$ $2561(2)$ $6618(2)$ $36(1)$ $C(26)$ $5569(2)$ $2444(2)$ $7079(2)$ $29(1)$ $C(31)$ $3987(2)$ $3556(2)$ $7898(2)$ $21(1)$ $C(32)$ $4554(2)$ $3616(2)$ $8613(2)$ $29(1)$ $C(33)$ $4716(2)$ $4412(2)$ $9001(2)$ $32(1)$ $C(34)$ $4310(2)$ $5153(2)$ $8685(2)$ $30(1)$ $C(35)$ $3746(2)$ $5105(2)$ $7977(2)$ $30(1)$ $C(44)$ $3857(2)$ $286(2)$ $9153(2)$ $40(1)$ $C(44)$ $3857(2)$ $286(2)$ $9153(2)$ $40(1)$ $C(45)$ $3397(2)$ $1026(2)$ $9282(2)$ $32(1)$ $C(46)$ $3426(2)$ $1720(1)$ $8743(1)$ $27(1)$ $C(45)$ $3397(2)$ $1026(2)$ $9282(2)$ $32(1)$ $C(46)$ $3426(2)$ $1720$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B(6)   | 1354(2) | -2008(2)           | 6195(2)            | 30(1)                 |
| (1) $(12)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ $(2)$ <t< td=""><td>B(7)</td><td>1858(2)</td><td>-1936(2)</td><td>5259(2)</td><td>29(1)</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B(7)   | 1858(2) | -1936(2)           | 5259(2)            | 29(1)                 |
| B(9) $2798(2)$ $-843(2)$ $6470(2)$ $27(1)$ $B(10)$ $2503(2)$ $-1946(2)$ $6233(2)$ $31(1)$ $C(21)$ $4729(2)$ $2547(2)$ $6711(2)$ $24(1)$ $C(22)$ $4606(2)$ $2766(2)$ $5878(2)$ $32(1)$ $C(23)$ $5298(2)$ $2914(2)$ $5422(2)$ $39(1)$ $C(24)$ $6126(2)$ $2807(2)$ $5794(2)$ $38(1)$ $C(25)$ $6262(2)$ $2561(2)$ $6618(2)$ $36(1)$ $C(26)$ $5569(2)$ $2444(2)$ $7079(2)$ $29(1)$ $C(31)$ $3987(2)$ $3556(2)$ $7898(2)$ $21(1)$ $C(32)$ $4554(2)$ $3616(2)$ $8613(2)$ $29(1)$ $C(33)$ $4716(2)$ $4412(2)$ $9001(2)$ $32(1)$ $C(34)$ $4310(2)$ $5153(2)$ $8685(2)$ $30(1)$ $C(35)$ $3746(2)$ $5105(2)$ $7977(2)$ $30(1)$ $C(36)$ $3591(2)$ $4310(2)$ $7586(2)$ $27(1)$ $C(41)$ $3913(2)$ $1685(2)$ $8066(2)$ $22(1)$ $C(42)$ $4359(2)$ $935(2)$ $7934(2)$ $34(1)$ $C(43)$ $4340(2)$ $236(2)$ $8480(2)$ $47(1)$ $C(44)$ $3857(2)$ $286(2)$ $9153(2)$ $40(1)$ $C(45)$ $3397(2)$ $1026(2)$ $9282(2)$ $32(1)$ $C(46)$ $3426(2)$ $1720(1)$ $8743(1)$ $27(1)$ $S(3)$ $1517(1)$ $-5256(2)$ $6206(2)$ $42(1)$ $O(1)$ $1990(2)$ $-46$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B(8)   | 2762(2) | -1245(2)           | 5428(2)            | 26(1)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B(9)   | 2798(2) | -843(2)            | 6470(2)            | 27(1)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B(10)  | 2503(2) | -1946(2)           | 6233(2)            | $\frac{2}{(1)}$       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(21)  | 4729(2) | 2547(2)            | 6711(2)            | 24(1)                 |
| $\begin{array}{ccccc} (22) & 1308(2) & 2914(2) & 542(2) & 39(1) \\ C(23) & 5298(2) & 2914(2) & 5422(2) & 39(1) \\ C(24) & 6126(2) & 2807(2) & 5794(2) & 38(1) \\ C(25) & 6262(2) & 2561(2) & 6618(2) & 36(1) \\ C(26) & 5569(2) & 2444(2) & 7079(2) & 29(1) \\ C(31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(32) & 4554(2) & 3616(2) & 8613(2) & 29(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(42) & 4359(2) & 935(2) & 7934(2) & 34(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(22)  | 4606(2) | 2766(2)            | 5878(2)            | 32(1)                 |
| $\begin{array}{ccccc} (24) & 6126(2) & 2807(2) & 5794(2) & 38(1) \\ C(24) & 6126(2) & 2807(2) & 5794(2) & 38(1) \\ C(25) & 6262(2) & 2561(2) & 6618(2) & 36(1) \\ C(26) & 5569(2) & 2444(2) & 7079(2) & 29(1) \\ C(31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(32) & 4554(2) & 3616(2) & 8613(2) & 29(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(42) & 4359(2) & 935(2) & 7934(2) & 34(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(23)  | 5298(2) | 2914(2)            | 5422(2)            | 39(1)                 |
| $\begin{array}{ccccc} (25) & 612(2) & 2561(2) & 6618(2) & 36(1) \\ C(25) & 6262(2) & 2561(2) & 6618(2) & 36(1) \\ C(26) & 5569(2) & 2444(2) & 7079(2) & 29(1) \\ C(31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(32) & 4554(2) & 3616(2) & 8613(2) & 29(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(42) & 4359(2) & 935(2) & 7934(2) & 34(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(24)  | 6126(2) | 2807(2)            | 5794(2)            | 38(1)                 |
| $\begin{array}{ccccc} (26) & 5269(2) & 2444(2) & 7079(2) & 29(1) \\ C(31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(32) & 4554(2) & 3616(2) & 8613(2) & 29(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(42) & 4359(2) & 935(2) & 7934(2) & 34(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(25)  | 6262(2) | 2561(2)            | 6618(2)            | 36(1)                 |
| $\begin{array}{ccccc} (31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(31) & 3987(2) & 3556(2) & 7898(2) & 21(1) \\ C(32) & 4554(2) & 3616(2) & 8613(2) & 29(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(42) & 4359(2) & 935(2) & 7934(2) & 34(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(26)  | 5569(2) | 2444(2)            | 7079(2)            | 29(1)                 |
| $\begin{array}{cccc} (32) & 4554(2) & 3616(2) & 8613(2) & 29(1) \\ C(33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(42) & 4359(2) & 236(2) & 8480(2) & 47(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(31)  | 3987(2) | 3556(2)            | 7898(2)            | 21(1)                 |
| $\begin{array}{ccccc} (33) & 4716(2) & 4412(2) & 9001(2) & 32(1) \\ C(33) & 4716(2) & 5153(2) & 8685(2) & 30(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(42) & 4359(2) & 935(2) & 7934(2) & 34(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(32)  | 4554(2) | 3616(2)            | 8613(2)            | 29(1)                 |
| $\begin{array}{ccccc} (34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(34) & 4310(2) & 5153(2) & 8685(2) & 30(1) \\ C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(42) & 4359(2) & 935(2) & 7934(2) & 34(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C(33)  | 4716(2) | 4412(2)            | 9001(2)            | $\frac{2}{32(1)}$     |
| $\begin{array}{cccccc} C(35) & 3746(2) & 5105(2) & 7977(2) & 30(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(42) & 4359(2) & 935(2) & 7934(2) & 34(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(44) & 3857(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C(34)  | 4310(2) | 5153(2)            | 8685(2)            | 30(1)                 |
| $\begin{array}{ccccc} (36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(36) & 3591(2) & 4310(2) & 7586(2) & 27(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(42) & 4359(2) & 935(2) & 7934(2) & 34(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(35)  | 3746(2) | 5105(2)            | 7977(2)            | 30(1)                 |
| $\begin{array}{ccccc} (41) & 3913(2) & 1635(2) & 8066(2) & 22(1) \\ C(41) & 3913(2) & 1685(2) & 8066(2) & 22(1) \\ C(42) & 4359(2) & 935(2) & 7934(2) & 34(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(36)  | 3591(2) | 4310(2)            | 7586(2)            | 27(1)                 |
| $\begin{array}{ccccc} (42) & 4359(2) & 935(2) & 7934(2) & 34(1) \\ C(42) & 4359(2) & 236(2) & 8480(2) & 47(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(41)  | 3913(2) | 1685(2)            | 8066(2)            | 22(1)                 |
| $\begin{array}{ccccc} (43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(43) & 4340(2) & 236(2) & 8480(2) & 47(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(42)  | 4359(2) | 935(2)             | 7934(2)            | 34(1)                 |
| $\begin{array}{cccc} C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(44) & 3857(2) & 286(2) & 9153(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(43)  | 4340(2) | 236(2)             | 8480(2)            | 47(1)                 |
| $\begin{array}{cccc} C(45) & 3397(2) & 1026(2) & 9155(2) & 40(1) \\ C(45) & 3397(2) & 1026(2) & 9282(2) & 32(1) \\ C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(44)  | 3857(2) | 286(2)             | 9153(2)            | 40(1)                 |
| $\begin{array}{cccc} C(46) & 3426(2) & 1720(1) & 8743(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(45)  | 3397(2) | 1026(2)            | 9282(2)            | 32(1)                 |
| $\begin{array}{cccc} (40) & 5420(2) & -1750(1) & 5745(1) & 27(1) \\ S(3) & 1517(1) & -5256(2) & 6206(2) & 42(1) \\ O(1) & 1960(2) & -4631(2) & 6744(2) & 78(1) \\ O(2) & 671(2) & -5474(2) & 6406(2) & 60(1) \\ O(3) & 2026(2) & -6003(2) & 5995(1) & 45(1) \\ C(100) & 1339(3) & -4694(2) & 5218(3) & 51(1) \\ F(1) & 810(2) & -4018(1) & 5262(2) & 67(1) \\ F(2) & 1002(2) & -5218(2) & 4625(1) & 72(1) \\ F(3) & 2073(2) & -4391(2) & 4977(2) & 95(1) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(45)  | 3426(2) | 1020(2)<br>1720(1) | 8743(1)            | $\frac{32(1)}{27(1)}$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S(3)   | 1517(1) | -5256(2)           | 6206(2)            | $\frac{27(1)}{42(1)}$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O(1)   | 1960(2) | -4631(2)           | 6744(2)            | $\frac{12(1)}{78(1)}$ |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O(2)   | 671(2)  | = 5474(2)          | 6406(2)            | 60(1)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O(3)   | 2026(2) | -6003(2)           | 5995(1)            | 45(1)                 |
| F(1) $810(2)$ $-4074(2)$ $5210(3)$ $51(1)$ $F(2)$ $1002(2)$ $-4018(1)$ $5262(2)$ $67(1)$ $F(3)$ $2073(2)$ $-4391(2)$ $4977(2)$ $95(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C(100) | 1330(2) | = 4694(2)          | 5718(3)            | 51(1)                 |
| F(1) $510(2)$ $-4010(1)$ $5202(2)$ $07(1)$ $F(2)$ $1002(2)$ $-5218(2)$ $4625(1)$ $72(1)$ $F(3)$ $2073(2)$ $-4391(2)$ $4977(2)$ $95(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E(100) | 810(2)  | -4018(1)           | 5210(3)<br>5262(2) | 67(1)                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F(2)   | 1002(2) | -5218(2)           | 4625(1)            | 72(1)                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F(3)   | 2073(2) | -4391(2)           | 4977(2)            | 95(1)                 |

 $U_{eq}$  is defined as one third of the trace of the orthogonalised  $U_{ii}$  tensor.

Nujol mulls between polyethylene sheets. Conductivities were measured in ca.  $5 \times 10^{-4}$  mol dm<sup>-3</sup> solutions with a Philips 9509 conductimeter. C and H analyses were carried out with a Perkin-Elmer 2400 microanalyzer. Mass spectra were recorded on a VG autospec, with the LSIMS technique, using nitrobenzyl alcohol as matrix. NMR spectra were recorded on a Varian Unity 300 spectrometer and a Bruker ARX 300 spectrometer in CDCl<sub>3</sub>. Chemical shifts are cited relative to SiMe<sub>4</sub> (<sup>1</sup>H, external) and 85% H<sub>3</sub>PO<sub>4</sub> (<sup>31</sup>P, external). *o*-Carborane (Dexsil Chemical) and C<sub>10</sub>H<sub>8</sub>N<sub>2</sub>S<sub>2</sub> (Aldrich) were analytical reagent grade and used asgiven. The starting materials [Ag(OTf)L] were prepared by reaction of Ag(OTf) and the ligand L in dichloromethane. [Au(OTf)(PPh<sub>3</sub>)] was obtained from [AuCl(PPh<sub>3</sub>)] [17] and Ag(OTf) in dichloromethane.

## 3.1. $1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}$ (1)

To a solution of  $1,2-C_2B_{10}H_{10}$  (2.88 g, 20 mmol) in diethyl ether (100 cm<sup>3</sup>) at 0°C, and under nitrogen atmosphere Li<sup>*n*</sup>Bu (8 cm<sup>3</sup>, 2.5 M) was added. After stirring for 30 min,  $C_{10}H_8N_2S_2$  (4.40 g, 40 mmol) was added. The mixture was warmed to r.t. and washed with water (3 × 40 cm<sup>3</sup>). The organic phase was threated with MgSO<sub>4</sub>, and after 30 min the MgSO<sub>4</sub> was filtered off. Concentration of the solution and addition of hexane afforded bright yellow crystals of 1. Yield, 75%. Anal. Calc. for  $C_{12}H_{18}B_{10}N_2S_2$ : C, 39.75; H, 5.05; N, 7.7; S, 17.15. Found: C, 39.45; H, 4.8; N, 7.55; S, 17.7.  $\Lambda_M = 3 \ \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$ . <sup>1</sup>H-NMR:  $\delta = 8.62$  (dd, 1H), 7.72 (m, br, 2H), 7.32 (m, br, 1H).

## 3.2. $[Ag(OTf)\{1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}\}]$ (2)

To a solution of  $1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}$  (0.036 g, 0.1 mmol) in dichloromethane (20 cm<sup>3</sup>) a solution of AgOTf (0.1 mmol, 0.025 g) in Et<sub>2</sub>O (10 cm<sup>3</sup>) was added. The mixture was stirred for 30 min and the solution concentrated to ca. 5 cm<sup>3</sup>. Addition of hexane (10 cm<sup>3</sup>) gave complex **2** as a white solid. Yield, 78%. Anal. Calc. for  $C_{13}H_{18}AgB_{10}F_3N_2OS_3$ : C, 25.2; H, 2.9; N, 4.5; S, 15.5. Found: C, 24.9; H, 3.2; N, 4.3; S, 15.2.  $\Lambda_M = 91 \ \Omega^{-1} \text{ cm}^2 \text{ mol}^{-1}$ . <sup>1</sup>H-NMR,  $\delta$ : 8.74 (dd, 1H), 7.93 (td, 1H), 7.71 (d, 1H), 7.55 (td, 1H).

## 3.3. $[Ag\{1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}\}_2]OTf$ (3)

To a solution of  $1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}$  (0.072 g, 0.2 mmol) in dichloromethane (20 cm<sup>3</sup>), a solution of AgOTf (0.1 mmol, 0.050 g) in Et<sub>2</sub>O (10 cm<sup>3</sup>) was added. The mixture was stirred for 30 min and the solution concentrated to ca. 5 cm<sup>3</sup>. Addition of hexane (10 cm<sup>3</sup>) gave complex **3** as a white solid. Yield, 69%. Anal. Calc. for  $C_{25}H_{36}AgB_{20}F_3N_4O_3S_5$ : C, 30.95; H, 3.7; N, 5.7; S, 16.0. Found: C, 30.45; H, 3.2; N,

5.3; S, 15.5.  $\Lambda_{\rm M} = 134 \ \Omega^{-1} \ {\rm cm}^2 \ {\rm mol}^{-1}$ . <sup>1</sup>H-NMR,  $\delta$ : 8.85 (d, 1H), 7.92 (m, br, 2 H), 7.55 (m, br, 1H).

## 3.4. $[Ag\{1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}\}L]OTf$ $[L = PPh_3$ (4), $PPh_2Me$ (5), $AsPh_3$ (6)]

To a solution of 1,2-(C<sub>5</sub>H<sub>4</sub>NS)<sub>2</sub>-1,2-C<sub>2</sub>B<sub>10</sub>H<sub>10</sub> (0.036 g, 0.1 mmol) in dichloromethane (30 cm<sup>3</sup>), [Ag(OTf)L] was added (0.1 mmol; 0.052 g,  $L = PPh_3$ ; 0.046 g,  $L = PPh_2Me$ ; 0.056 g,  $L = AsPh_3$ ). The solution was stirred for 30 min and concentrated to ca. 5 cm<sup>3</sup>. Addition of diethyl ether (10 cm<sup>3</sup>) gave complexes 4-6 as white solids. 4: yield 65%. Anal. Calc. for C<sub>31</sub>H<sub>33</sub>AgB<sub>10</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>PS<sub>3</sub>: C, 42.2; H, 3.8; N, 3.2; S, 11.0. Found: C, 42.65; H, 3.75; N, 2.65; S, 10.4.  $\Lambda_{\rm M} = 94 \ \Omega^{-1} \, {\rm cm}^2 \, {\rm mol}^{-1}$ . <sup>1</sup>H-NMR,  $\delta$ : 9.38 (d, 1H), 7.92 (t, 1H), 7.70 (t, 1H), 7.76 (d, 1H), 7.3-7.5 (m, br, 15H).  ${}^{31}P{}^{1}H$ -NMR,  $\delta$ : 12.9 (2 d,  $J {}^{109}AgP =$ 712.3,  $J^{107}$ AgP = 619.4 Hz). 5: yield 50%. Anal. Calc. for C<sub>26</sub>H<sub>31</sub>AgB<sub>10</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>PS<sub>3</sub>: C, 38.1; H, 3.8; N, 3.4; S,11.75. Found: C, 38.05; H, 3.8; N, 3.2; S, 11.5.  $\Lambda_{\rm M} = 112 \ \Omega^{-1} \ {\rm cm}^2 \ {\rm mol}^{-1}$ . <sup>1</sup>H-NMR,  $\delta$ : 9.20 (d, 1H), 7.8 (t, 1H), 7.69 (d, 1H), 7.54 (t, 1H), 7.2-7.5 (m, br, 10H), 1.96 (d, J (PH) = 6.3 Hz).  ${}^{31}P{}^{1}H$ -NMR,  $\delta$ : -6.6 (dd,  $J^{109}$ AgP = 732.4,  $J^{107}$ AgP = 633.8 Hz). 6: yield 52%. Anal. Calc. for C<sub>31</sub>H<sub>33</sub>AgB<sub>10</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub>S<sub>3</sub>: C, 40.2; H, 3.6; N, 3.0; S,10.45. Found: C, 40.65; H, 3.7; N, 2.5; S, 9.6.  $\Lambda_{\rm M} = 114 \ \Omega^{-1} \, {\rm cm}^2 \, {\rm mol}^{-1}$ . <sup>1</sup>H-NMR, δ: 7.3-7.5 (m, br, 15H), 7.92 (m, br, 1H), 7.73 (m, br, 2H), 7.67 (m, br, 1H).

## 3.5. $[Au_2\{1,2-(C_5H_4NS)_2-1,2-C_2B_{10}H_{10}\}(PPh_3)_2](OTf)_2$ (7)

To a solution of  $[Au(OTf)(PPh_3)]$  (0.062 g, 0.1 mmol) in dichloromethane (20 cm<sup>3</sup>), 1,2-(C<sub>5</sub>H<sub>4</sub>NS)<sub>2</sub>-1,2-C<sub>2</sub>B<sub>10</sub>H<sub>10</sub> (0.036 g, 0.1 mmol) was added. The mixture was stirred for 30 min. Concentration of solvent to ca. 5 cm<sup>3</sup> and addition of hexane (10 cm<sup>3</sup>) afforded complex **7** as a white solid. Yield, 70%. Anal. Calc. for C<sub>50</sub>H<sub>66</sub>Au<sub>2</sub>B<sub>10</sub>F<sub>6</sub>N<sub>2</sub>O<sub>6</sub>P<sub>2</sub>S<sub>2</sub>: C, 38.0; H, 3.1; N, 1.75; S, 8.1. Found: C, 38.5; H, 2.65; N, 1.8; S, 7.8.  $\Lambda_{\rm M} = 138 \ \Omega^{-1} \ {\rm cm}^2 \ {\rm mol}^{-1}$ . <sup>1</sup>H-NMR,  $\delta$ : 7.3–7.5 (m, br, 30H), 8.99 (m, br 1H), 8.35 (m, br, 2H), 7.96 (m, br, 1H). <sup>31</sup>P{<sup>1</sup>H}-NMR,  $\delta$ : 34.6 (s, br).

## 3.6. Crystal structure determination of complex 4

#### 3.6.1. Crystal data

4:  $C_{31}H_{33}AgB_{10}F_{3}N_{2}O_{3}PS_{3}$ ,  $M_{r} = 881.71$ , monoclinic, space group  $P2_{1}/c$ , a = 15.647(1), b = 15.411(1), c = 16.190(1) Å,  $\beta = 95.439(7)^{\circ}$ , V = 3886.4(4) Å<sup>3</sup>, Z = 4,  $D_{calc} = 1.507$  Mg m<sup>-3</sup>,  $\lambda$ (Mo-K<sub> $\alpha$ </sub>) = 0.71073 Å,  $\mu = 0.772$  mm<sup>-1</sup>, F(000) = 1776,  $T = -100^{\circ}C$ .

## 3.6.2. Data collection and reduction

Single crystals were obtained by slow diffusion of hexane into a dichloromethane solution of complex 4. A colourless prism  $0.40 \times 0.30 \times 0.25$  mm was used to collect 9388 intensities to  $2\theta_{\text{max}}$  50° (Siemens P4 diffractometer, monochromated Mo-K<sub>a</sub> radiation) of which 6836 were independent ( $R_{\text{int}} = 0.030$ ). Cell constants were refined from  $2\theta$  values of 75 reflections in the range 10–25°. An absorption correction was applied on the basis of  $\Psi$ -scans (transmission factors 0.750–0.831).

#### 3.6.3. Structure solution and refinement

Structure was solved by direct methods and refined on  $F^2$  using the program SHELXL-93 [18]. All non-hydrogen atoms were refined anisotropically. Refinement proceeded to wR ( $F^2$ ) 0.0634 for 6830 reflections and 487 parameters. Conventional R(F) 0.0299;  $S(F^2)$ 0.857;  $\Delta \rho = 0.568$  e Å<sup>-3</sup>.

### 4. Supplementary material available

Full details of the crystal structure determination can be ordered from Fachinformationszentrun Karlsruhe, 76344 Eggenstein-Leopoldshafen, under the depositary number CSD-407191.

#### Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica (No. PB94-0079) for financial support.

#### References

- [1] (a) R.N. Grimes, Carboranes, Academic Press, New York, 1970.
   (b) J. Plesek, Chem. Rev. 92 (1992) 269.
- [2] (a) R.F. Barth, A.H. Soloway, R.G. Fairchild, Cancer Res. 50 (1990) 1061. (b) M.F. Hawthorne, Pure Appl. Chem. 63 (1991) 327.
  (c) M.F. Hawthorne, Angew. Chem. Int. Ed. Engl. 32 (1993) 950.
- [3] D.A. Brown, H.M. Colquhoun, J.A. Daniels, J.A.H. MacBride, I.R. MacBride, I.R. Stephenson, K. Wade, J. Mater. Chem. 2 (1992) 793.
- [4] L.G. Sneddon, M.G. Mirabelli, A.T. Lynch, P.J. Fazen, K. Su, J.S. Beck, Pure Appl. Chem. 63 (1991) 407.
- [5] O. Crespo, M.C. Gimeno, P.G. Jones, A. Laguna, J. Chem. Soc. Chem. Commun. (1993) 1696.
- [6] M.M. Artigas, O. Crespo, M.C. Gimeno, P.G. Jones, A. Laguna, M.D. Villacampa, J. Organ. Chem. 561 (1998) 1.
- [7] (a) C. Viñas, R. Núñez, F. Teixidor, R. Kivekäs, R. Sillanpää, Organomettallics 15 (1996) 3850. (b) C. Viñas, R. Núñez, M.A. Flores, F. Teixidor, R. Kivekäs, R. Sillanpää, Organometallics 14 (1995) 3952.
- [8] O. Crespo, M.C. Gimeno, P.G. Jones, A. Laguna, M.D. Villacampa, Angew. Chem. Int. Ed. Engl. 36 (1977) 993.
- [9] T.J. Marks, J.R. Kolb, Chem. Rev. 77 (1977) 263.
- [10] A. Bellamy, Infra Red Spectra of Complex Molecules, vol. 2, 1980, p. 52.
- [11] (a) G.A. Lawrance, Chem. Rev. 86 (1986) 17. (b) D.H. Johnston, D.F. Shriver, Inorg. Chem. 32 (1993) 1045.
- [12] D. Carmona, F.J. Lahoz, L.A. Oro, M.P. Lamata, S. Buzarra, Organometallics 10 (1991) 3123.
- [13] M.I. Bruce, J.D. Walsh, B.W. Skelton, A.H. White, J. Chem. Soc. Dalton Trans. (1981) 956.
- [14] R. Usón, A. Laguna, M. Laguna, M.C. Gimeno, P.G. Jones, C. Fittschen, G.M. Sheldrick, J. Chem. Soc. Chem. Commun. (1986) 509.
- [15] M.C. Gimeno, P.G. Jones, A. Laguna, C. Sarroca, J. Chem. Soc. Dalton Trans. (1995) 1473.
- [16] E. Bembenek, O. Crespo, M.C. Gimeno, P.G. Jones, A. Laguna, Chem. Ber. 127 (1994) 835.
- [17] R. Usón, A. Laguna, Inorg. Synth. 21 (1982) 71.
- [18] G.M. Sheldrick, SHELXL-93, Program for Crystal Structure Refinement, University of Göttingen, 1993.